7 research outputs found

    WIYN Open Cluster Study. LXIII. Abundance in the Super-Metal-Rich Open Cluster NGC 6253 from Hydra Sprectroscopy of the 7774 Ã… Oxygen Triplet Region

    Get PDF
    We present a spectroscopic abundance analysis of the old, super-metal-rich open cluster NGC 6253, with emphasis on its O abundance. High-dispersion, 7774 Å O i triplet region spectra of 47 stars were obtained using Hydra II on the CTIO Blanco 4 m. Radial velocity analysis confirms 39 stars consistent with single star membership, primarily at the turnoff. Thirty-six of these are included in our abundance analysis. Our differential analysis relative to the Sun yields primarily scaled-solar values, with weighted cluster averages of [O/H] = +0.440 ± 0.020, [Fe/H] = +0.445 ± 0.014, [Al/H] = +0.487 ± 0.020, [Si/H] = +0.504 ± 0.018, and [Ni/H] = +0.702 ± 0.018 (where the errors are σμ{{\sigma }_{\mu }}). We discuss possible origins for the three known super-metal-rich clusters based upon their abundance patterns, Galactic locations, and space motions. The abundance patterns of NGC 6253 are very similar to those of NGC 6791 and NGC 6583. With the possible exception of oxygen, the abundances of these clusters are all close to scaled-solar, and they are similar to patterns seen in metal-rich disk dwarfs and giants. However, they also seem to differ from those of metal-rich bulge stars. We demonstrate that NGC 6253 is unusually oxygen rich (in [O/H]) for its 3.3 Gyr age. While we find [O/Fe] to be scaled-solar for NGC 6253, the more recently reported values for NGC 6791 show a large variation, from values close to scaled-solar down to values at least a factor of two below scaled-solar. We discuss the possibility that the scaled-solar [O/Fe] abundances of NGC 6253 and NGC 6791 might reflect a flattening of the Galactic [O/Fe] versus [Fe/H] relationship. This possibility may be consistent with disk star abundance data, which show an apparent "floor" at [O/Fe] ∼−0.1\sim -0.1 for [Fe/H] >  0\gt \;0, and with chemical evolution model results, which may predict such a flattening due to a decrease in supernova Fe yields at super-solar-metallicities. Orbit solutions for NGC 6791 allow that it may have formed in the inner disk and was then kicked out, but the origins of the other two much younger clusters remain mysterious. We re-evaluate the age of NGC 6583 in view of the evidence that the cluster is super-metal-rich, and confirm a probable age less than 1 Gyr (best range: 500–900 Myr). We also argue that it is unlikely the cluster is more than 3 kpc away (best range: 2–3 kpc) if the apparent turnoff, main sequence, and giants are all cluster members

    WIYN Open Cluster Study. XXXIX. Abundances in NGC 6253 from HYDRA Spectroscopy of the Li 6708 A Region

    Full text link
    High-dispersion spectra of 89 potential members of the old, super-metal-rich open cluster, NGC 6253, have been obtained with the HYDRA multi-object spectrograph. Based upon radial-velocity measurements alone, 47 stars at the turnoff of the cluster color-magnitude diagram (CMD) and 18 giants are identified as potential members. Five turnoff stars exhibit evidence of binarity while proper-motion data eliminates two of the dwarfs as members. The mean cluster radial velocity from probable single-star members is -29.4 +/- 1.3 km/sec (sd). A discussion of the current estimates for the cluster reddening, derived independently of potential issues with the BV cluster photometry, lead to an adopted reddening of E(B-V) = 0.22 +/- 0.04. From equivalent width analyses of 38 probable single-star members near the CMD turnoff, the weighted average abundances are found to be [Fe/H] = +0.43 +/- 0.01, [Ni/H] = +0.53 +/- 0.02 and [Si/H] = +0.43 (+0.03,-0.04), where the errors refer to the standard errors of the weighted mean. Weak evidence is found for a possible decline in metallicity with increasing luminosity among stars at the turnoff. We discuss the possibility that our turnoff stars have been affected by microscopic diffusion. For 15 probable single-star members among the giants, spectrum synthesis leads to abundances of +0.46 (+0.02,-0.03) for [Fe/H]. While less than half the age of NGC 6791, NGC 6253 is at least as metal-rich and, within the uncertainties, exhibits the same general abundance pattern as that typified by super-metal-rich dwarfs of the galactic bulge.Comment: 5 Tables, 9 figures, 45 page

    Acceleration of Coronal Mass Ejection Plasma in the Low Corona as Measured by the Citizen CATE Experiment

    No full text
    corecore